The yeast centromere CDEI/Cpf1 complex: differences between in vitro binding and in vivo function.
نویسندگان
چکیده
The centromere and promoter factor Cpf1 binds centromere DNA element I found in all centromere DNAs from the yeast Saccharomyces cerevisiae. We analyzed thirty different point mutations in or around CEN6-CDEI (ATCACGTG) for their relative binding affinity to Cpf1 and these data were compared with the in vivo centromere function of these mutants. We show that the minimal length of the Cpf1 binding site needed for full in vitro binding and in vivo activity is 10 base pairs long comprised of CDEI plus the two base pairs 3' of this sequence. The palindromic core sequence CACGTG is most important for in vivo CEN function and in vitro Cpf1 binding. Symmetrical mutations in either halfsite of the core sequence affect in vitro Cpf1 binding and in vivo mitotic centromere function asymmetrically albeit to a different extent. Enlarging the CDEI palindrome to 12 or 20 bps increases in vitro Cpf1 binding but results in increased chromosome loss rates suggesting a need for asymmetrical Cpf1 binding sequences. Additionally, the ability of Cpf1 protein to bind a mutant CDEI element in vitro does not parallel the ability of that mutant to confer in vivo CEN activity. Our data indicate that the in vitro binding characteristics of Cpf1 to CDEI only partly overlap with their corresponding activity within the centromere complex, thus suggesting that in the in vivo situation the CDEI/Cpf1 complex might undergo interactions with other centromere DNA/protein complexes.
منابع مشابه
Cpf1 protein induced bending of yeast centromere DNA element I.
The centromere complex is a multicomponent structure essential for faithful chromosome transmission. Here we show that the S. cerevisiae centromere protein Cpf1 bends centromere DNA element I (CDEI) with the bend angle ranging from 66 degrees to 71 degrees. CDEI DNA sequences that carry point mutations which lead to reduced Cpf1 binding affinity and in vivo centromere activity are still able to...
متن کاملThe centromere and promoter factor 1 of yeast contains a dimerisation domain located carboxy-terminal to the bHLH domain.
CPF1 is a basic helix-loop-helix (bHLH) protein required for optimal centromere function and for maintaining methionine independent growth in yeast. In this work, we show that the region carboxy-terminal to the bHLH domain of CPF1 is essential for CPF1 function in the cell and for dimerisation of CPF1 in solution. The C-terminus of CPF1 contains a potential long amphipathic helix with a hydroph...
متن کاملInteraction of yeast kinetochore proteins with centromere-protein/transcription factor Cbf1.
The centromere-kinetochore complex of Saccharomyces cerevisiae is a specialized chromosomal substructure that mediates attachment of duplicated chromosomes to the mitotic spindle by a regulated network of protein-DNA and protein-protein interactions. We have used in vitro assays to analyze putative molecular interactions between components of the yeast centromerekinetochore complex. Glutathione...
متن کاملDetermination of the binding constants of the centromere protein Cbf1 to all 16 centromere DNAs of Saccharomyces cerevisiae.
Cbf1p is a Saccharomyces cerevisiae chromatin protein belonging to the basic region helix-loop-helix leucine zipper (bHLHzip) family of DNA binding proteins. Cbf1p binds to a conserved element in the 5'-flanking region of methionine biosynthetic genes and to centromere DNA element I (CDEI) of S.cerevisiae centromeric DNA. We have determined the apparent equilibrium dissociation constants of Cbf...
متن کاملGenetic Analysis of the Saccharomyces Cerevisiae Centromere-Binding Protein CP1: a Thesis
CPl is a sequence-specific DNA binding protein of yeast (Saccharomyces cerevisiae) which recognizes the highly fonserved A glement I (CDEI) of yeast centromeres. We cloned and sequenced the gene encoding CPl. The gene codes for a protein of molecular weight 39,400. When expressed in E. , i coli, the CPl gene directed the synthesis of a CDEI-binding protein having the same SDS gel mobilty as pur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 22 14 شماره
صفحات -
تاریخ انتشار 1994